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Abstract 

The two purposes of this paper are to provide a SAS IML macro that performs loglinear 

smoothing and to apply this macro to loglinear smoothing problems that have not been 

extensively discussed in the test-equating literature. The SAS macro is demonstrated on 

univariate, bivariate, and trivariate smoothing problems. The univariate and bivariate examples 

reproduce published results (von Davier, Holland, & Thayer, 2004). The trivariate example 

extends the bivariate smoothing example to allow for comparisons of subgroups’ univariate and 

bivariate distributions. The implications are that important questions about distribution 

differences and subpopulation invariance of equating functions can be considered through 

comparisons and evaluations of complex loglinear models that are easily fit with this SAS IML 

macro. 
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Introduction 

Polynomial loglinear models for one-, two- and higher-way contingency tables (Bock & 

Yates, 1973; Haberman, 1974a, 1978, 1979) have important applications to measurement and 

assessment (Hanson, 1991; Holland & Thayer, 1987, 2000; Rosenbaum & Thayer, 1987). Two 

such applications are test score distribution estimation and comparison (Kolen, 1991; Hanson, 

1996). Another application is the estimation and enhancement of test-equating stability (von 

Davier, Holland, & Thayer, 2004; Holland & Thayer, 1989; Kolen & Brennan, 1995; Livingston, 

1993; Skaggs, 2004). In these applications, the polynomial loglinear models are essentially 

regarded as a smoothing technique that is commonly referred to as loglinear smoothing. 

In an effort to make loglinear smoothing more readily available, reports have described 

how it can be implemented with SAS/STAT PROC GENMOD (Moses & von Davier, 2004; 

Moses, von Davier, & Casabianca, 2004;SAS Institute, 2002a). PROC GENMOD is flexible and 

adequate for most simple univariate smoothing problems. However, it can have convergence 

problems for some bivariate loglinear smoothing problems. Moreover, PROC GENMOD does 

not directly provide the so-called “C-matrices”—that is, the low-rank matrix factors of the 

covariance matrix of the estimated probabilities (von Davier et al., 2004; Holland & Thayer, 

1989, 2000) that are important computational tools for the standard errors of the smoothed 

frequencies and the accuracy measures used in the kernel equating framework.  

The possibility of developing a SAS IML (SAS Institute, 2002b) macro that implements 

loglinear smoothing without the limitations of PROC GENMOD was investigated. The purpose 

of this paper is to describe this new SAS macro (rather than to demonstrate PROC GENMOD) 

and to apply it to problems that have not been extensively discussed in the literature. The SAS 

macro performs loglinear smoothing according to Holland and Thayer’s (1987, 2000) 

specifications. It is appropriate for univariate, bivariate, and trivariate frequency distributions of 

test data, and it converges even when PROC GENMOD fails. This macro also computes the C-

matrix factors.  

The first major section of this paper reviews the use of loglinear models for smoothing 

discrete distributions. The second section describes how to obtain and use the SAS macro to fit 

loglinear smoothing models. The third and fourth sections demonstrate the macro with respect to 

a simple univariate smoothing problem and a much more complicated 22-parameter bivariate 

problem, both from von Davier et al. (2004). The fifth section demonstrates the SAS macro on a 
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trivariate smoothing problem, where the third variable defines a subgroup that provides a basis 

for comparing bivariate distributions (see also Liou, Cheng, & Li, 2001). The implications of 

these applications are discussed in terms of future research with a focus on the study of equating 

methods. 

Loglinear Smoothing Models 

Assume we have a random variable X that defines the test form X (we use the same 

notation for a test form and a random variable) with possible values x0,…,xJ , or xj, with j = 

0,…,J (the possible score values) and a corresponding vector of observed score frequencies n = 

(n0,…,nJ )t that sum to the total sample size N. Under some distributional assumptions about n, 

like multinomial or Poisson distributional assumptions, the vector of the population score 

probabilities p = (p0,…,pJ)t is said to satisfy a loglinear model if 

log ( )e j jp uα= + + jb β        (1) 

where the {pj} are assumed to be positive and sum to one, bj  is a row vector of constants 

referred to as score functions throughout this text (e.g., xj
1

, xj
2

, xj
3), β is a vector of free 

parameters, uj is a known constant that specifies the distribution of the {pj} when β = 0, and α is 

a normalizing constant that ensures that the probabilities sum to one. 

Under different choices of u, B (the matrix of score functions formed by arranging the 

row vectors, bj, one on top of the other), or β, the loglinear model becomes equivalent to the 

discrete uniform distribution (u = 0, β = 0) or the binomial distribution (see Holland & Thayer, 

1987, 2000, for details).  

Loglinear models are a class of exponential families of discrete distributions, which can 

be described in terms of their sample moments. As in Holland and Thayer (1987, 2000), we will 

make use of this property and of the fact that the ju  are known constants. Therefore in this paper 

the loglinear model used to fit a univariate distribution is 

1
log ( ) ( )

I
i

e j i j
i

p α β
=

= +∑ x ,       (2) 

where the ju  are set to zero. When the data are test score data, the terms in this model can be 

defined as follows: the xj
i are score functions of the possible score values of test X (e.g., xj

1
,  xj

2
, 
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xj
3,…, xj

I), α  is as described above, and the iβ  are free parameters to be estimated in the model-

fitting process. 

The value of I determines the number of moments of the actual test score distribution that 

are preserved in the smoothed distribution. If I = 1 then the smoothed distribution preserves the 

first moment (the mean) of the observed distribution. If I = 4 then the smoothed distribution 

preserves the first, second, third, and fourth moments (mean, variance, skewness, and kurtosis) 

of the observed distribution. 

The model in (2) can be extended to fit the bivariate distribution of the scores of two tests 

(call them X and Y): 

1 1 1 1

log ( ) ( ) ( ) ( ) ( )
I H G F

i h g
e j k xi j yh k gf j k

i h g f

fp x y xα β β β
= = = =

= + + +∑ ∑ ∑ ∑ y ,  (3) 

where j kp  is the joint score probability of the score (xj, yk; score xj on test X and score yk on test 

Y). The fitting of (3) produces a smoothed bivariate distribution that preserves I moments in the 

marginal (univariate) distribution of X; H moments in the marginal (univariate) distribution of Y; 

and a number of cross-moments ( ,  G I F H≤ ≤ ) in the bivariate X-Y distribution. Model (3) is 

also appropriate for the smoothing of bivariate distributions with impossible X-Y score 

combinations, structural zeros, when the total test score can never be less than the score on the 

internal anchor test and the anchor score cannot be less than its maximum possible value to a 

greater extent than the total test score is less than its maximum possible value (see Holland & 

Thayer for an example, 2000).  

Indicator functions can be used to fit both the full univariate distribution and a subset of 

the distribution (e.g. teeth or lumps at different score points) within a single loglinear model. One 

example of such a model is: 

1 2
1 2 3 4log ( ) ( ) ( ) ( )= + + + +e j j j j j

1
jp x x S xα β β β β S ,   (4) 

where the indicator function jS = 1 if j belongs to a defined subset of all j’s and jS  = 0 

otherwise. jS  denotes the set of score points where the frequencies are systematically lower or 

higher than most of the test frequencies. Model (4) will preserve the mean and variance of the 
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total distribution of X (β1 and β2), the total frequency in the cells denoted as jS  = 1 (β3), and the 

mean of the cell values for the cells in jS  = 1 (β4). 

One additional smoothing model combines the bivariate model in (3) with the use of 

indicator functions in (4): 

 1 1 1 1

1 1 1 1

log ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= = = =

= = = =

= + + + +

+ + +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

I H G F
i h g

e jkl l l xi j yh k gf j k
i h g f

I H G F
i h g f

xiS j l yhS k l gfS j k l
i h g f

fp S x y x

x S y S x y S

α β β β β

β β β

y
 (5) 

The model in (5) is useful for preserving features in a trivariate distribution, where j klp  is the 

probability of score (xj, yk) in subgroup Sl  =  0 or 1. Model (5) preserves the subgroups’ 

frequencies, X and Y univariate moments, and XY cross-moments. Simpler versions of (5) can 

include fewer subgroup-varying terms and can allow the subgroups’ distributions to share certain 

parameters. For example, less xiSβ  terms can be included, allowing for a certain number of the 

lowest univariate moments in X to vary by subgroups, but constraining the higher moments to be 

equal so that they are shared by the subgroups and equal to those of the total distribution. 

Fitting Loglinear Smoothing Models 

Under the assumption that the vector of the frequencies is multinomial, the estimation of 

the free parameters (βi) proceeds by maximizing the following log-likelihood function: 

 ,        (6) log ( )j e j
j

L n p=∑

where nj and jp  are the observed frequencies and the population score probabilities in the jth 

cell, respectively (Holland & Thayer, 1987, 2000). 

The maximization of (6) can be accomplished through the use of the Newton-Raphson 

algorithm (Holland & Thayer, 1987, p. 11). Holland and Thayer specify two criteria for the 

convergence solution from the algorithm. One criterion involves the maximization of the log-

likelihood function; the maximum is said to be attained when the relative change in the log-

likelihood is less than some specified value. The second criterion involves the satisfaction of the 
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likelihood equation for all of the estimated parameters (β), meaning that the relative error in each 

fitted moment must be less than some specified value. At convergence both criteria should be met. 

To add stability to the Newton-Raphson algorithm, the score functions in B are 

transformed so that they sum to zero and their squares sum to one (Holland & Thayer, 1987, 

2000; Rosenbaum & Thayer, 1987). Holland and Thayer also suggest specific starting values. 

The suggested starting values for the parameter estimates are based on converting the observed 

frequencies into a smoother form with nonzero frequencies at all score points and then 

computing a function of these converted frequencies and the score functions.  

Large-sample standard errors of the estimated parameters (β) can be estimated when the 

Newton-Raphson algorithm converges to a maximum likelihood solution. The parameter 

estimates and standard errors that correspond to the higher moments are misleadingly small 

because they are coefficients of scores raised to high powers. If the comparability of parameter 

estimates is of interest, a preferable approach to defining score functions in terms of powers 

would be to define them as orthogonal polynomials (Haberman, 1974a).  

At convergence, the variance-covariance matrix of β is given as  

1( ) ( ( ) )tB n Bβ −=Cov Cov ,        (7) 

where  and ( ) ( )t
pn D pp= −Cov N pD  is the diagonal matrix of p . 

Evaluating the Fit of Loglinear Models 

There are several measures that are useful for evaluating the extent to which the 

smoothed frequencies match the observed frequencies. The likelihood ratio chi-square statistic is 

given as: 

2 2 log (
ˆ

j
j e

j j

n
G n

p N
= ∑ ) ,       (8) 

where ˆ jp  is the smoothed value of pj based on a particular model. This measure is often used in 

statistical tests that evaluate the relative fit of nested and competing models (Agresti, 2002; 

Haberman, 1974b; Hanson, 1996; Holland & Thayer, 2000).  

Other measures for overall model fit include the Pearson chi-square statistic, 
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2ˆ( )
ˆ

j j

j j

n p N
p N
−

∑ ,        (9) 

the Freeman-Tukey chi-square statistic, 

( )2
ˆ1 4 1j j j

j

n n p N+ + − +∑ ,      (10) 

and two measures that penalize the overfitting of data, including the Akaike information criterion 

(AIC; Akaike, 1981, 1987), which adds twice the number of parameters estimated by the model 

to the likelihood chi-square statistic, and the consistent Akaike information criterion (CAIC; 

Bozdogan, 1987), which adds 1+log(N) times the number of parameters to the likelihood ratio 

chi-square statistic. Variants of these measures not computed with the SAS IML macro include 

other members of Cressie and Read’s power-divergence family of chi-square statistics (Read & 

Cressie, 1988), the Bayesian inference criterion (Schwarz, 1978), and Gilula and Haberman’s 

modification of the AIC (Gilula & Haberman, 1994). 

In addition to evaluating overall model fit, it can be useful to compare the smoothed and 

observed frequencies at each score level using Freeman-Tukey residuals (Freeman & Tukey, 

1950),  

ˆ1 4j j jn n p N+ + − +1 .        (11) 

When a model fits the data well, the Freeman-Tukey residuals are asymptotically normally and 

randomly distributed with a mean of zero and a variance approaching one. The asymptotic 

variance of the Freeman-Tukey residuals is less than one and the departure from one depends on 

the complexity of the model and the sparseness of the data (Bishop, Feinberg, & Holland, 1975 

Haberman, 1973, 1974b;). Freeman-Tukey residuals are especially useful for suggesting whether 

indicator functions or higher moments are warranted in univariate distributions. The residuals 

become less useful when there are many zeros in the observed frequencies (as in many bivariate 

problems). 

C-Matrices 

The estimated variance-covariance matrix of the smoothed probabilities ( ) can be used 

for obtaining their confidence intervals (Holland & Thayer, 1987, 2000) and for computing 

p̂Σ
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standard errors of kernel equating (von Davier et al., 2004). A very useful factorization of the 

estimated variance-covariance matrix is the C-matrix, defined as: 

ˆ
t

p pC CΣ =p ,         (12) 

where  is the J by I matrix that can be efficiently computed as: pC

1/ 2
pC D−=

p
N Q .        (13) 

The diagonal matrix, 
p

D , has the diagonal entries jp , and Q  is the J by I orthogonal matrix 

that comes from the following QR-factorization: 

ˆ ˆ
pD p p B Q⎡ ⎤− =⎣ ⎦

t R .       (14) 

Q is a J by I matrix with orthogonal columns, R is an I by I upper triangular matrix, and B is the 

matrix of score functions and shown in (1) (Holland & Thayer, 1987). The QR call routine in SAS 

returns a J by J matrix (SAS Institute, 2002b), so the SAS IML macro uses the first I columns of 

the outputted Q in computing the C-matrix (Dongarra, Bunch, Moler, & Stewart, 1979). 

A SAS Macro for Loglinear Smoothing 

The SAS macro described in this paper is flexible enough to address several of the 

loglinear smoothing problems described in the literature, including univariate, bivariate, and 

trivariate problems, and provides all of the fit measures reviewed in the previous section and the 

C-matrix. The requirements for implementing the macro are: SAS software, SAS IML, and some 

familiarity with SAS DATA and PROC statements. This macro will be distributed upon request 

by the first author. The 6-step procedure for implementing the macro within SAS is summarized 

in Appendix A.  

Error Catching 

The macro is designed to be user friendly, meaning that if users specify impossible 

conditions, the macro will output informative messages about what it needs in order to run. For 

example, if the user misspells their count variable or score functions so that the macro is unable 

to find them within the specified dataset, the macro will stop running and output one of the 

following error messages to the SAS log:  
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ERROR: Unable To Find Your Count Variable In Your Dataset. 

ERROR: Unable To Find Your Score Function Variable(s) In Your Dataset. 

Additional messages give specific feedback to the user when the macro cannot locate the 

dataset within the specified library, when the dataset has missing values, or when the user does 

not list a count variable or any score functions at all. 

Limitations 

The macro has been found to produce acceptable results for a variety of smoothing 

problems, but it sometimes fails to converge. When the model contains a large number of 

parameters (e.g., >10 or 12 moments for some univariate problems), SAS IML is less able to 

solve the required linear systems that are necessary for computing the Newton-Raphson update 

for the parameter values. As a result, the macro will terminate and give an error message about 

singular matrices.  

Within SAS IML, the procedure for finding matrices that solve linear systems is 

intentionally limited by the machine’s precision (SAS Institute, 2002b). Even with convergence 

in the overall solution, the SAS macro will sometimes be unable to compute a matrix inverse 

required for the standard errors of β. In this situation, everything except the standard errors of β 

will be produced. Our attempts to work around these constraints considered the use of singular 

value decomposition to compute the required matrix inverses while using a more liberal 

singularity criterion. The results of these attempts were converged but incorrect solutions. We 

therefore treat the SAS-imposed singularity constraint as a necessary balance of the flexible 

Newton-Raphson algorithm (which allows for the fitting of a variety of different kinds of 

parameters) and the storage constraints of the SAS system. One promising possibility for 

improving the convergence rate of the SAS IML macro involves the use of orthogonal 

polynomials of the scores rather than powers of the scores, a possibility that directly resolves the 

singularity issues with B and, as mentioned earlier, allows for comparisons of the βs. 

Convergence Criteria 

The strictest usable values for convergence criteria should be no smaller than the square 

root of machine precision (Press, Teukolsky, Vetterling, & Flannery, 1992, p. 398). Since SAS 

stores numbers as eight-byte reals, the machine precision is about 1e-15. Therefore the strictest 
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convergence criteria in SAS would be 15 -81e 3e− ≈ . These convergence values may be overly 

strict, especially because of collinearity issues with B. Both criteria are labeled in the macro code 

so that the user may consider larger values for difficult smoothing problems. 

Univariate Smoothing Example 

In this section, a univariate smoothing from von Davier et al. (2004, p. 99–105) is 

reproduced. All of the code and output for this example is provided in the appendices, and the 

reader is invited to follow along with the analyses and also to evaluate the results in terms of the 

original work. The data are already in the form of a score distribution, where the test (Y) is a 20-

item rights-scored test that was taken by 1,455 examinees. Appendix B illustrates how the 

frequency data are entered into a SAS dataset and also how the score functions needed for a 

model that preserves the first three moments of the distribution of Y are defined. The following 

model is fit: 

1 2
1 2 3log ( ) ( ) ( ) ( )e j j j j

3p y yα β β β= + + + y     (15) 

Appendix C shows SAS macro commands and gives the resulting output. Overall, the 

model fits the data very well, as suggested by the small likelihood ratio chi-square statistic 

(20.24) relative to the degrees of freedom (17). The dataset outputted from the macro (named 

“outresults”) contains the frequencies and score functions in the original dataset plus smoothed 

counts, smoothed probabilities, Freeman-Tukey residuals, and the C-matrix. This dataset is 

shown in Appendix D. Appendix E shows how to obtain the plot of the observed and smoothed 

frequencies. Appendix F shows how the moment-matching characteristics of the smoothed 

results can be verified within SAS. This conversion of datasets of smoothed frequencies into 

datasets of individual scores based on the smoothed frequencies may provide useful inputs into 

other routines that rely on datasets of individual observations, but it also makes expensive time 

demands for large frequency tables. The more direct way of computing distribution moments 

from the probabilities is demonstrated in the trivariate smoothing section. 

Bivariate Smoothing Example 

In this section, the results of a bivariate loglinear problem from von Davier et al. (2004, 

p. 155–167) are reproduced. These data come from the fall 2001 national administration of a 

high-volume testing program. The bivariate distribution is of a total test (X) with 78 items (j = 0 
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to 78) and an external anchor (A) with 35 items (l = 0 to 35). The descriptive statistics, based on 

a sample of 10,634 examinees, are included in Appendix G. The tests are correlated at .88, and 

out of the 2,844 possible score combinations, 1,502 have zero frequencies. The 22-parameter 

model to be described next does not converge using SAS PROC GENMOD. 

These data exhibit some unusual patterns that suggest special considerations for the 

loglinear model. First, the two marginal distributions have teeth, a regular pattern of cells with 

frequencies that are much lower than those of neighboring cells. The teeth are due to the use of 

rounded formula scores and are at every 5th score from score 5 on for X and from score 2 on for 

A. Second, there are lumps (very large frequencies) at score 0 in both marginal distributions, due 

to the rounding of all negative scores to zero. Because these patterns are due to aspects of the test 

and the processing of its scores and not to randomness in the sample, they are explicitly 

incorporated into the bivariate loglinear model. 

Under the assumption that the sample bivariate frequencies njl, have an independent, 

approximate multinomial distribution with population cell probabilities pjl, the fitted model is the 

following: 

4 4 2 2

0
1 1 1 1

3 3

0 0

log ( ) ( ) ( ) ( ) ( )

( ) ( )

= = = =

= =

= + + + + +

+ +

∑ ∑ ∑ ∑

∑ ∑

i h g
e j x a xi j jal ah l

i h g f

e d
xe j asad l

e d

xo

xs

S S

S

p x a

S x a

α β β β β β

β β

f
gf lx a

 (16) 

The terms of (16) are defined as follows.  

The pjl are the population probabilities of obtaining score xj on test X and score al on test 

A. The α is a scaling constant that constrains the sum of all of the pjl’s to 1. The Sx0 and Sa0 terms 

are indicator functions set to 1 when xj and al are 0 and set to 0 when xj and al are not 0. They 

will preserve the lumps at zero in X and A. The four xj
i and al

h terms are univariate score 

functions (the score on tests X and A to the power of 1, 2, 3, and 4) that will preserve the first 

four moments of the marginal distributions of X and A. The four xj
gal

f terms will preserve four 

different degrees of dependence in X and A: XA (the covariance), XA2, X2A, and X2A2. The Sxs and 

Sas terms are indicator functions equal to 1 when xj and al are teeth scores and zero otherwise. 

The Sxs(xj)e and Sxs(al)d terms will preserve the total frequencies of the teeth of X and A when e = 

d = 0 and the first three moments of the distributions of the teeth (e and d go from 1 to 3). All of 

the βs are free parameters to be estimated by the model-fitting algorithm. 

 10



von Davier et al (2004) discuss the importance of three of the cross-moments that 

describe the joint distribution, XA2, X2A, and X2A2, in the context of equating. In addition to (16), 

we also considered an alternative model, (17), that preserves everything in (16) except for the 

three cross-moments (XA2, X2A, and X2A2). Model (17) is not shown here. Appendix H shows the 

SAS code from importing the dataset to defining the needed score functions for fitting the 

models. Appendix I shows how the SAS macro is called for (16) and (17) and also compares the 

overall fit statistics from both models.  

The model fit statistics for each individual model are not χ2-distributed with such sparse 

data, but the use of significance tests for comparing the fit statistics of limited models can still be 

meaningful (Haberman, 1977). The difference between the likelihood ratio chi-square statistics 

for (16) and (17) is 600 on 3 degrees of freedom, significant beyond p < .0001. The two fit 

statistics that penalize for overfitting models (the AIC and CAIC) are also smaller for the more 

complex model in (16). These results provide support for including the three cross-moment terms 

in the model (XA2, X2A, and X2A2.). Finally, we give the smoothed and observed plots of the 

marginal distributions of X and A in Appendices J and K, where the smoothed frequencies are 

based on (16) (von Davier et al., p. 156–157). These plots show close matches between the 

observed and smoothed distributions, especially with respect to the teeth of the distributions.  

Trivariate Smoothing Example 

Trivariate loglinear models can be used to consider if and how the score distributions of 

examinee subgroups differ from the overall score distributions. This trivariate smoothing 

example extends the 22-parameter bivariate model from the previous section in two ways. First, 

the probabilities to be modeled are defined in terms of the three variables, test X, test A, and a 

subgroup function. Second, the model is extended to consider how the subgroups’ X, A, and XA 

distributions differ. Four trivariate models are considered, ranging from very simple, where the 

subgroups share all of their parameters, to very complex, where the subgroups are considered 

independent and differ in terms of all of their parameters. 

The Subgroup 

Because the XA exam is a verbal assessment, an important way to subgroup the examinees 

is based on their experience with English. This is captured by examinees’ responses to a question 

about their first language. On the basis of responses to this question, examinees were classified 
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into two groups, one group of 6,867 examinees where English was their first and only language, 

and a second group of 3,767 examinees who were exposed to languages other than English. The 

descriptive statistics on tests X and A for these two sets of examinees are presented in Appendix L. 

The XA correlation is .88 for the examinees with English as their first and only language and .89 

for the examinees who were exposed to languages other than English. The statistics reveal 

differences in the marginal distributions for each examinee group. Specifically, the English-only 

students are a better-performing and a slightly more homogeneous group. 

Four Trivariate Models: (18), (19), (20), and (21) 

The first loglinear model fit to the trivariate data is based on the well-fitting bivariate 

model considered in the previous section. To review, this model preserves the first four moments 

in X and A, lumps at zero in tests X and A, the frequencies and first three moments of the teeth of 

tests X and A, and four cross-moments in X and A. To this model we add an indicator function 

(Sc) defined as 1 for the English-only examinees and zero for the other examinees, which 

preserves the frequencies in each subgroup. The resulting 23-parameter model is:  

4 2 2

1 1 1

4

0
1

3 3

0 0

( ) ( ) ( )log ( ) ( )

( ) ( )

= = ==

= =

+

+

= + + + +

+ +

∑ ∑∑∑

∑ ∑

h g
l gf j

h g f

i
e j x a xi j aalc

i

e d
xe j as c cad l

e d

xo

xs

a xp S S x

S x S a S

βα β β β β

β β β

f
la

fa

 (18) 

Model (18) is nested within two more complex models defined to incorporate specific 

kinds of subgroup differences in the distributions of X, A, and XA. The first of these two models, 

(19), evaluates the extent to which subgroup distributions differ with respect to the marginal 

distributions of X and A. We added four parameters to (18) in order to consider the extent to 

which the fit of (18) can be improved by allowing the means and variances of X and A to differ 

by subgroup in a 27-parameter model: 

2

( 4)
1

4 4 2 2

0
1 1 1 1

3 3 2

( 4)
0 0 1

( )

log ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) +
=

= = = =

+
= = =

+ +

= + + + + +

+ + +∑

∑ ∑ ∑ ∑

∑ ∑ ∑ h
a h l
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Another model, (20), evaluates the extent to which subgroup distributions differ with 

respect to their bivariate XA distributions: 
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 (20) 

Finally, a fourth model, (21), was fit that allowed all of the 22 parameters (excluding the 

subgroup frequencies parameter) in (18) to differ by subgroup (45 parameters): 
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 (21) 

This fourth model allowed for a consideration of the fit of a model that regarded the 

subgroups as completely independent with respect to their univariate and bivariate distributions 

and also with respect to their zero-score frequencies and the distributions of their teeth (which 

address the omitting pattern differences of the examinees). Models (18) through (21) allow for 

direct evaluations of how the X and A distributions differ. The SAS code that imports the 

trivariate data and defines the score functions needed for the four models is shown in Appendix 

M. Appendix N shows how the three models are fit using the SAS macro and also presents the 

overall model statistics from the four models.  

Comparisons of the fit statistics across the four models suggest that the subgroups differ 

much more in terms of their marginal X and A distributions than their bivariate XA distributions. 

When the means and variances of X and A are allowed to differ by subgroup in (19), the 

likelihood ratio chi-square measure improves relative to (18) by 114.73 with these additional 4 

degrees of freedom (significant beyond p < .0001). This is almost all of the improvement in the 
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likelihood ratio chi-square statistic that could be obtained by allowing all of the parameters to 

vary by subgroup in (21) (132.10). The AIC and CAIC measures also decrease, suggesting that 

the additional parameters are not overfitting the data. To gain further insight into how the 

marginal distributions of X and A differ, Appendices O and P plot them for the two subgroups 

and also for the total group based on (19). The differences are visible, showing that the English 

examinee group has higher means and smaller variances on X and A. 

When the subgroups are allowed to differ in terms of their bivariate distribution, the 

improvement in model fit is not as dramatic. When considering (20) relative to the simpler model 

in (19), the likelihood ratio chi-square is reduced by 7.66 on 4 degrees of freedom (p > .10). The 

AIC and CAIC statistics actually increase, which suggests that allowing the bivariate XA 

moments to vary by subgroup could be overfitting the very sparse bivariate data. To gain further 

insight into the subgroup differences in the conditional distribution of X given A, the conditional 

means and standard deviations of X for each score of A are computed and plotted in Appendix Q, 

based on (20). These conditional statistics are almost exactly the same for the two groups, with 

the exception at the anchor score of zero, where the English as first language examinees are 

shown to have larger means and standard deviations on X. 

Research Implications of This Study 

The primary objective of this paper was to make a flexible and powerful SAS IML macro 

available for loglinear smoothing. The demonstrations provided in this paper show that many 

different kinds of smoothings can be performed with the macro, including univariate, bivariate, 

and trivariate problems. 

A second objective of this paper is to promote the use of loglinear modeling for 

comparing distributions and models, in addition to the smoothing of score frequencies. These 

comparisons of distributions are directly relevant to the consideration of different equating 

models. When loglinear models are used along with the kernel equating framework (von Davier 

et al., 2004), alternative tests of the same question can be considered. For example, the 

comparison of subgroups’ distributions that was featured in this paper’s trivariate section has an 

analogous significance test of group-equating functions at test-score levels within kernel 

equating (through using the discussed trivariate loglinear smoothing results as input and the 

standard error of equating differences). Comparisons of distribution-level and equated-score-

level results are only now being performed (Moses, Yang, & Wilson, 2005). The approaches 
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have implications for showing the additional noise that equating functions add to score 

distributions, for assessing the practical implications of differences between equating functions, 

and for directly testing the distributional assumptions of specific equating approaches (linear vs. 

curvilinear and population invariance assumptions).  
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Appendix A 

The Steps for Implementing the SAS Macro for Loglinear Smoothing 

1.  Enter the dataset into SAS. We assume that most of the time this initial dataset lists 

the test score(s) for each individual examinee. 

2.  Convert the dataset from 1) into a frequency dataset that lists the counts for each 

observed test score or observed combination of test scores.  

3.  Because not every test score or combination of test scores is always attained in an 

observed sample, an additional, empty frequency table should be created that includes 

all possible scores or score combinations. For bivariate data of total tests and internal 

anchors, this step should exclude structural zeros, the impossible score combinations 

(e.g. if scored as “number rights,” the anchor score cannot be greater than the total 

test score). 

4.  Merge the datasets in 2) and 3) and convert any missing counts to zero, 

5.  Define all of the score functions needed to preserve the desired moments in the 

smoothing model. 

6.  Fit the model with the SAS macro. This step will require only two lines of code, 

which are the following: 

%include '[filelocation]\loglinmacro.sas'; 

%loglin(libname=,data=,count=,scoref=,output=); 

The first line calls in the file of the macro from an accessible drive location and only 

needs to be run once at the beginning of the SAS session. The second line runs the macro, where 

library for the dataset can be optionally named after libname=, and a dataset within the library 

that contains the score frequencies is listed after data=, the observed counts to be smoothed are 

listed after count=, and the score functions that correspond to the moments that are to be 

preserved are listed after scoref=. Several measures of model fit will be printed and saved to an 

outputted dataset named fitoutput, where output is specified after output=. A second 

outputted dataset, named after output=, will include the test score values and score functions, 

the observed counts, the smoothed counts, the smoothed probabilities, the Freeman-Tukey 

residuals, and the C-matrix. 
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Appendix B 

Univariate Example: Entering the Frequency Table and Defining the Score Functions 

data llin; 

input count y; 

cards; 

0 0 

4 1 

11 2 

16 3 

18 4 

34 5 

63 6 

89 7 

87 8 

129 9 

124 10 

154 11 

125 12 

131 13 

109 14 

98 15 

89 16 

66 17 

54 18 

37 19 

17 20 

; 

data llin;set llin; 

y2=y**2; 

y3=y**3; 

run; 
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Appendix C 

Univariate Example: Running the Smoothing Macro and Its Results 

%include 'H:\ApSplreq\tpm\loglinearsmoothing\aera\loglinmacro.sas'; 

%loglin(data=llin,count=count,scoref=y y2 y3,output=outresults); 

                                                            RESULTS 

                                          The following score functions were included: 

                                                         SCOREFUNCTIONS 

                                                         Y     Y2    Y3 

                                                                       ITER 

                                        The solution converged in         6 iterations. 

                                                            MODELFIT 

                                            Likelihood Ratio Chi-square        20.24 

                                            Pearson Chi-square                 18.35 

                                            Freeman-Tukey Chi-square           20.09 

                                            AIC                                28.24 

                                            CAIC                               53.37 

                                            Degrees of Freedom                 17.00 

                                                         BETAESTIMATES 

                                                            Betas       StdErrors 

                                               Y  0.8389425393320 0.0917352777665 

                                               Y2 -.0453897017972 0.0087387126508 

                                               Y3 0.0005035366392 0.0002577475833 

                                                             ALPHA 

                                                           -6.748485 

 



Appendix D 

Univariate Example: The Dataset Outputted From Running the SAS Smoothing Macro 

proc print data=outresults noobs;run; 

   count     y     y2      y3    smoothedcounts    smoothedprobs    ftresiduals             cY            cY2            cY3 

      0      0      0       0          1.706          0.001173        -1.79729     -.000090589    -.000184074    -.000285245 

      4      1      1       1          3.775          0.002594         0.22371     -.000183128    -.000330256    -.000429494 

     11      2      4       8          7.649          0.005257         1.15954     -.000336071    -.000527477    -.000544529 

     16      3      9      27         14.242          0.009788         0.50944     -.000560484    -.000744582    -.000545922 

     18      4     16      64         24.436          0.016794        -1.33537     -.000849736    -.000915463    -.000345930 

     34      5     25     125         38.752          0.026634        -0.74332     -.001170120    -.000949703    0.000093103 

     63      6     36     216         56.978          0.039160         0.80741     -.001459501    -.000764005    0.000707042 

     89      7     49     343         77.905          0.053543         1.23973     -.001638764    -.000324827    0.001318586 

     87      8     64     512         99.354          0.068284        -1.25213     -.001634929    0.000318990    0.001690498 

    129      9     81     729        118.543          0.081473         0.96117     -.001407797    0.001035082    0.001628788 
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     17     20    400    8000         24.180          0.016619        -1.51966     0.000930977    -.001287237    0.001442615 

    124     10    100    1000        132.724          0.091219        -0.74696     -.000968368    0.001644944    0.001083547 

    154     11    121    1331        139.868          0.096129         1.18530     -.000379933    0.001985664    0.000188722 

    125     12    144    1728        139.154          0.095638        -1.20858     0.000259296    0.001967721    -.000784962 

    131     13    169    2197        131.097          0.090101         0.01328     0.000844677    0.001602719    -.001539598 

    109     14    196    2744        117.307          0.080623        -0.75635     0.001293062    0.000991380    -.001864801 

     98     15    225    3375        100.000          0.068728        -0.17559     0.001560260    0.000281782    -.001703649 

     89     16    256    4096         81.457          0.055984         0.84239     0.001644003    -.000380778    -.001148582 

     66     17    289    4913         63.596          0.043709         0.32865     0.001574774    -.000892001    -.000383198 

     54     18    324    5832         47.732          0.032806         0.91084     0.001400550    -.001204595    0.000393841 

     37     19    361    6859         34.545          0.023742         0.44973     0.001171820    -.001323284    0.001029168 



plot count*y smoothedcounts*y / overlay vaxis=axis1 haxis=axis2 

legend=legend1;  

axis1 label=(angle=-90 rotate=90 'Frequency' font='Times New Roman' 

height=2in); 

 

 

run;quit; 

title 'Figure 1. Observed and Smoothed Frequencies'; 

proc gplot data=outresults; 

symbol2 color=blue interpol=none width=1 value=circle height=1; 

symbol1 color=green interpol=none width=1 value=triangle height=1; 

 value=('Observed' 'Smoothed') position=(top center); 

Legend1 label=(height=1 position=top justify=center '') 

axis2 order=(0 to 20 by 1) label=('Score' height=100in ); 

Univariate Example: Plotting the Observed and Smoothed Counts 

Appendix E 
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Appendix F 

Univariate Example: Verifying That the Smoothed Distribution Preserves the First 

Three Moments of the Observed Distribution 

/*These commands create large datasets based on the actual and fitted frequencies of X. 

Then i compare the moments of these datasets.*/ 

data yobserved;set outresults; 

do i=1 to 1000*count; 

output; 

end; 

drop i; 

data ysmoothed;set outresults; 

do i=1 to 1000*smoothedcounts; 

output; 25

end; 

drop i; 

data yobssmooth;merge yobserved(rename=y=yobserved) ysmoothed(rename=y=ysmoothed); 

proc means data=yobssmooth mean std skew kurt; 

var yobserved ysmoothed; 

title 'Moments based on the actual and smoothed frequencies of Y.'; 

run; 

                                   Moments based on the actual and smoothed frequencies of Y.                      

                                                      The MEANS Procedure 

                           Variable             Mean         Std Dev        Skewness        Kurtosis 

                           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                           yobserved      11.5931271       3.9342663      -0.0626866      -0.4988359 

                           ysmoothed      11.5931404       3.9342451      -0.0626767      -0.4277949 

                           ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

 



Variable            Mean         Std Dev        Skewness        Kurtosis         Minimum         Maximum            

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

                             Table 1: Descriptive statistics of the two tests, X and A (N=10,634).                 

Appendix G 

Bivariate Example: The Descriptive Statistics of the Marginal Distributions of X and A 

proc means data=neatxa mean std skew kurt min max; 

var x a; 

title 'Table 1: Descriptive statistics of the two tests, X and A (N=10,634).'; 

run; 

                                                      The MEANS Procedure 

 

26 X             39.2656573      17.1952746      -0.1014811      -0.7825456               0      78.0000000 

A             17.0539778       8.3332670      -0.0096494      -0.8534236               0      35.0000000 

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

 



Appendix H 

Bivariate Example: Implementing Steps 1-5 of the SAS Routine 

/*Step 1: Inputting the dataset of Individual Observations*/ 

data neatxa; infile 'H:\bivariate.dat'; 

input @9 X 2. 

 @11 A 2.; 

/*Step 2: Obtaining the Observed Bivariate Frequencies.*/ 

proc freq data=neatxa noprint;tables X*A / out=neatxa;run; 

/*Step 3: Defining all possible score combinations.*/ 

data outxa;do x=0 to 78 by 1;do a=0 to 35 by 1;output;end;end; 

/*Step 4: Merging 2 and 3*/ 

data neat;merge neatxa outxa;by x a; if count=. then count=0; 

/*Step 5: Defining the Score Functions for the Desired Models.*/ 

data neat;set neat; 

/*The score functions for X.*/ 

x2=x**2; 

x3=x**3; 

x4=x**4; 

/*The score functions for A.*/ 

a2=a**2; 

a3=a**3; 

a4=a**4; 

/*The X-A Cross-Moments.*/ 

ax=a*x; 

a2x=a*a*x; 

ax2=a*x*x; 

a2x2=a*a*x*x; 

/*The lumps at zero for X and A.*/ 

if x=0 then IX0=1;else IX0=0; 

if a=0 then IA0=1;else IA0=0; 

/*The teeth of X.*/ 

do i=5 to 75 by 5;if X=i then IXS=1;end; 

if IXS=. then IXS=0; 

/*The teeth of A.*/ 

do j=2 to 32 by 5;if a=j then IAS=1;end; 

if IAS=. then IAS=0; 
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/*The univariate moments for the teeth of X and A.*/ 

IXSx=IXS*x; 

IXSx2=IXS*x2; 

IXSx3=IXS*x3; 

IASa=IAS*a; 

IASa2=IAS*a2; 

IASa3=IAS*a3; 
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Appendix I 

Bivariate Example: The SAS Code and Output for Fitting (16) and (17) 

/*Model 16*/ 

%loglin(data=neat,count=count,scoref=X X2 X3 X4 A A2 A3 A4 IX0 IA0 IXS IXSX 

IXSX2 IXSX3 IAS IASA IASA2 IASA3 ax ax2 a2x a2x2,output=model16); 

/*Model 17*/ 

%loglin(data=neat,count=count,scoref=X X2 X3 X4 A A2 A3 A4 IX0 IA0 IXS IXSX 

IXSX2 IXSX3 IAS IASA IASA2 IASA3 ax,output=model17); 

data results;merge fitmodel16 fitmodel17; 

proc print data=results noobs;run; 

                                         The SAS System           

                      STATS                          MODEL16       MODEL17 

                      Likelihood Ratio Chi-square    1966.93      2566.90 

                      Pearson Chi-square             6466.90    2.4227E14 

                      Freeman-Tukey Chi-square       1632.96      1780.86 

                      AIC                            2012.93      2606.90 

                      CAIC                           2203.18      2772.33 

                      Degrees of Freedom             2821.00      2824.00 
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Appendix J 

Bivariate Example: Plotting the Observed and Smoothed Counts of X 

proc means data=model16 noprint;var count smoothedcounts;class x;output 

out=xgraph sum=observed smoothed;run; 

data xgraph;set xgraph;if x=. then delete; 

axis1 order=(0 to 250 by 50) label=(angle=-90 rotate=90 'Frequency' 

font='Times New Roman' height=2in); 

axis2 order=(0 to 78 by 5) label=('Score' height=100in ); 

Legend1 label=(height=1 position=top justify=center '') 

 value=('Observed' 'Smoothed') position=(top center); 

proc gplot data=xgraph; 

plot observed*x='plus' smoothed*x='square' / overlay vaxis=axis1 haxis=axis2 

legend=legend1;  

title 'Figure 2. Observed and Smoothed Frequencies'; 

run;quit; 
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plot observed*a='plus' smoothed*a='square' / overlay vaxis=axis1 haxis=axis2 

legend=legend1;  

axis1 order=(0 to 500 by 100) label=(angle=-90 rotate=90 'Frequency' 

font='Times New Roman' height=2in); 

proc means data=model16 noprint;var count smoothedcounts;class a;output 

out=agraph sum=observed smoothed;run; 

 

run;quit; 

title 'Figure 3. Observed and Smoothed Frequencies'; 

proc gplot data=agraph; 

 value=('Observed' 'Smoothed') position=(top center); 

Legend1 label=(height=1 position=top justify=center '') 

axis2 order=(0 to 35 by 5) label=('Score' height=100in ); 

data agraph;set agraph;if a=. then delete; 

Bivariate Example: Plotting the Observed and Smoothed Counts of A 

Appendix K 
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Trivariate Example: Descriptive Statistics of the Subgroups’ Marginal Distributions on X and A (Step 1) 

Appendix L 

/*Step 1: Inputting the dataset of Individual Observations*/ 

data neatxa; infile 'H:\trivariate.dat'; 

input @7 efl $1. 

 @9 X 2. 

 @11 A 2.; 

data neatxa;set neatxa; 

length English $9.; 

if x<0 then x=0; 

if a<0 then a=0; 

if efl='A' then do;ie=1; English='First';end; 

else do;ie=0; English='Not First';end; 
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                Table 2. Comparing the Distributions of X and A for the Subgroups.               

proc means data=neatxa mean std skew kurt min max; 

var x a; 

class English; 

title 'Table 2. Comparing the Distributions of X and A for the Subgroups.'; 

run; 

                                       The MEANS Procedure 
  English      N Obs    Variable            Mean         Std Dev         Minimum         Maximum 

  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

  First         6867    X             40.2018349      16.7402678               0      77.0000000 

                        A             17.5545362       8.1164723               0      35.0000000 

  Not First     3767    X             37.5590656      17.8716481               0      78.0000000 

                        A             16.1414919       8.6414012               0      35.0000000 

  ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 

 



Appendix M 

Trivariate Example: The Data Processing Steps (2-5) 

data neatxa1;set neatxa;if ie=1;run; 

data neatxa0;set neatxa;if ie=0;run; 

/*Step 2: Obtaining the Observed Bivariate Frequencies.*/ 

proc freq data=neatxa1 noprint;tables X*A / out=neatxa1;run; 

proc freq data=neatxa0 noprint;tables X*A / out=neatxa0;run; 

/*Step 3: Defining all possible score combinations.*/ 

data outxa;do x=0 to 78 by 1;do a=0 to 35 by 1;output;end;end; 

/*Step 4: Merging 2 and 3*/ 

data neat0;merge neatxa0 outxa;by x a; if count=. then count=0;ie=0; 

data neat1;merge neatxa1 outxa;by x a; if count=. then count=0;ie=1; 

data neat;set neat0 neat1; 

/*Step 5: Defining the Score Functions for the Desired Models.*/ 

data neat;set neat; 

/*The score functions for X.*/ 

x2=x**2; 

x3=x**3; 

x4=x**4; 

/*The score functions for A.*/ 

a2=a**2; 

a3=a**3; 

a4=a**4; 

/*The X-A Cross-Moments.*/ 

ax=a*x; 

a2x=a*a*x; 

ax2=a*x*x; 

a2x2=a*a*x*x; 

/*The lumps at zero for X and A.*/ 

if x=0 then IX0=1;else IX0=0; 

if a=0 then IA0=1;else IA0=0; 

/*The teeth of X.*/ 

do i=5 to 75 by 5;if X=i then IXS=1;end; 

/*The teeth of A.*/ 

do j=2 to 32 by 5;if a=j then IAS=1;end; 

if IXS=. then IXS=0; 
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if IAS=. then IAS=0; 

/*The univariate moments for the teeth of X and A.*/ 

IXSx=IXS*x; 

IXSx2=IXS*x2; 

IXSx3=IXS*x3; 

IASa=IAS*a; 

IASa2=IAS*a2; 

IASa3=IAS*a3; 

run; 

/*Step 5, Subgroups: Defining the Subgroup Functions for the Desired Models.*/ 

data neat;set neat; 

/*The score functions for X.*/ 

iex1=x*ie; 

iex2=x2*ie; 

iex3=x3*ie; 

iex4=x4*ie; 

/*The score functions for A.*/ 

iea1=a*ie; 

iea2=a2*ie; 

iea3=a3*ie; 

iea4=a4*ie; 

/*The X-A Cross-Moments.*/ 

ieax=ie*a*x; 

iea2x=ie*a*a*x; 

ieax2=ie*a*x*x; 

iea2x2=ie*a*a*x*x; 

/*The lumps at zero for X and A.*/ 

if x=0 then IX0=1;else IX0=0; 

if a=0 then IA0=1;else IA0=0; 

ieIX0=ie*IX0; 

ieIA0=ie*IA0; 

/*The teeth of X.*/ 

do i=5 to 75 by 5;if X=i then IXS=1;end; 

/*The teeth of A.*/ 

do j=2 to 32 by 5;if a=j then IAS=1;end; 

if IXS=. then IXS=0; 

if IAS=. then IAS=0; 
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ieixs=ie*ixs; 

ieias=ie*ias; 

/*The univariate moments for the teeth of X and A.*/ 

IXSx=IXS*x; 

IXSx2=IXS*x2; 

IXSx3=IXS*x3; 

IASa=IAS*a; 

IASa2=IAS*a2; 

IASa3=IAS*a3; 

ieIXSx=ie*IXS*x; 

ieIXSx2=ie*IXS*x2; 

ieIXSx3=ie*IXS*x3; 

ieIASa=ie*IAS*a; 

ieIASa2=ie*IAS*a2; 

ieIASa3=ie*IAS*a3; 

run; 

 



Appendix N 

Trivariate Example: Fitting the Four Models and Outputting Their Results (Step 6) 

/* Model 18 */ 

%include 'H:\ApSplreq\tpm\loglinearsmoothing\aera\loglinmacro.sas'; 

%loglin(data=neat,count=count,scoref=X X2 X3 X4 A A2 A3 A4 IX0 IA0 IXS IXSX IXSX2 IXSX3 IAS IASA IASA2 IASA3 

ax ax2 a2x a2x2 ie,output=model18); 

/* Model 19 */ 

%loglin(data=neat,count=count,scoref=X X2 X3 X4 A A2 A3 A4 IX0 IA0 IXS IXSX IXSX2 IXSX3 IAS IASA IASA2 IASA3 

ax ax2 a2x a2x2 ie ieX1 ieX2 ieA1 ieA2,output=model19); 

/* Model 20 */ 

%loglin(data=neat,count=count,scoref=X X2 X3 X4 A A2 A3 A4 IX0 IA0 IXS IXSX IXSX2 IXSX3 IAS IASA IASA2 IASA3 

ax ax2 a2x a2x2 ie ieX1 ieX2 ieA1 ieA2 ieax ieax2 iea2x iea2x2,output=model20); 
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%loglin(data=neat,count=count,scoref=X X2 X3 X4 A A2 A3 A4 IX0 IA0 IXS IXSX IXSX2 IXSX3 IAS IASA IASA2 IASA3 

ax ax2 a2x a2x2 ie ieX1 ieX2 ieX3 ieX4 ieA1 ieA2 ieA3 ieA4 ieIX0 ieIA0 ieIXS ieIXSX ieIXSX2 ieIXSX3 ieIAS 

ieIASA ieIASA2 ieIASA3 ieax ieax2 iea2x iea2x2,output=model21); 

      STATS                            MODEL18       MODEL19       MODEL20        MODEL21 

      Likelihood Ratio Chi-square      3624.05       3514.30       3502.36        3491.95 

      Pearson Chi-square              12372.13      11635.84      11577.26       11945.93 

      Freeman-Tukey Chi-square         2932.99       2826.82       2812.39        2802.62 

      AIC                              3672.05       3570.30       3566.36        3583.95 

      CAIC                             3870.57       3801.91       3831.06        3964.45 

      Degrees of Freedom               5664.00       5660.00       5656.00        5642.00 

data results;merge fitmodel18 fitmodel19 fitmodel20 fitmodel21; 

proc print data=results noobs;run; 

/* Model 21 */ 

 



Appendix O 

Trivariate Example: Plotting the Marginal Distributions of X 

for the Total Group and the Subgroups 

proc means data=model21 noprint;var smoothedcounts;class x ie;output 

out=xgraph sum=smoothed;run; 

data xgraph;set xgraph;if x=. then delete; 

proc sort data=xgraph;by ie;run; 

axis1 order=(0 to 250 by 50) label=(angle=-90 rotate=90 'Frequency' 

font='Times New Roman' height=2in); 

axis2 order=(0 to 78 by 6) label=('Score' height=100in ); 

Legend1 label=(height=1 position=top justify=center '') 

 value=('Total Group' 'Another Language' 'English Language') 

position=(top center); 

symbol1 color=green interpol=none width=1 value=triangle height=1; 

symbol2 color=blue interpol=none width=1 value=circle height=1; 

symbol3 color=red interpol=none width=1 value=square height=1; 

proc gplot data=xgraph; 

plot smoothed*x=ie / vaxis=axis1 haxis=axis2 legend=legend1;  

title 'Figure 4. Comparing Subgroup and Total Smoothed Frequencies on X'; 

run;quit; 
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Appendix P 

Trivariate Example: Plotting the Marginal Distributions of A 

for the Total Group and the Subgroups 

proc means data=model21 noprint;var smoothedcounts;class a ie;output 

out=agraph sum=smoothed;run; 

data agraph;set agraph;if a=. then delete; 

proc sort data=agraph;by ie;run; 

axis1 order=(0 to 500 by 100) label=(angle=-90 rotate=90 'Frequency' 

font='Times New Roman' height=2in); 

axis2 order=(0 to 35 by 5) label=('Score' height=100in ); 

Legend1 label=(height=1 position=top justify=center '') 

 value=('Total Group' 'Another Language' 'English Language') 

position=(top center); 

symbol1 color=green interpol=none width=1 value=triangle height=1; 

symbol2 color=blue interpol=none width=1 value=circle height=1; 

symbol3 color=red interpol=none width=1 value=square height=1; 

proc gplot data=agraph; 

plot smoothed*a=ie / vaxis=axis1 haxis=axis2 legend=legend1;  

title 'Figure 5. Comparing Subgroup and Total Smoothed Frequencies on A'; 

run;quit; 
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Appendix Q 

Trivariate Example: Plotting the Conditional Moments of X Given A for the Subgroups 

/*Comparing Subgroup Differences on the Conditional Smoothed Moments.*/ 

/*Programming the Moments*/ 

data subgroups_pse0;set model20;if ie=0;run; 

data subgroups_pse1;set model20;if ie=1;run; 

proc means data=subgroups_pse0 noprint;var smoothedcounts;class a;output 

out=total0 sum=total;run; 

proc means data=subgroups_pse1 noprint;var smoothedcounts;class a;output 

out=total1 sum=total;run; 

data total0;set total0;if a=. then delete; 

data total1;set total1;if a=. then delete; 

proc sort data=subgroups_pse0;by a;run; 

proc sort data=subgroups_pse1;by a;run; 

data subgroups_pse0;merge subgroups_pse0 total0;by a; 

sp=smoothedcounts/total; 

xsp=x*sp; 

run; 

data subgroups_pse1;merge subgroups_pse1 total1;by a; 

sp=smoothedcounts/total; 

xsp=x*sp; 

run; 

proc means data=subgroups_pse0 noprint;var xsp;class a;output out=mean0 

sum=xsmoothedmean;run; 

proc means data=subgroups_pse1 noprint;var xsp;class a;output out=mean1 

sum=xsmoothedmean;run; 

data mean0;set mean0;if a=. then delete; 

data mean1;set mean1;if a=. then delete; 

data subgroups_pse0;merge subgroups_pse0 mean0;by a; 

x2sp=(x-xsmoothedmean)**2*sp; 

run; 

data subgroups_pse1;merge subgroups_pse1 mean1;by a; 

x2sp=(x-xsmoothedmean)**2*sp; 

run; 
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proc means data=subgroups_pse0 noprint;var x2sp;class a;output out=variances0 

sum=xsmoothedvar;run; 

proc means data=subgroups_pse1 noprint;var x2sp;class a;output out=variances1 

sum=xsmoothedvar;run; 

data variances0;set variances0;if a=. then delete; 

data variances1;set variances1;if a=. then delete; 

data subgroups_pse0;merge subgroups_pse0 variances0;by a; 

xssd=sqrt(xsmoothedvar); 

data subgroups_pse1;merge subgroups_pse1 variances1;by a; 

xssd=sqrt(xsmoothedvar); 

proc means data=subgroups_pse0 noprint;var xssd;class a;output out=sd0 

mean=xsmoothedsd;run; 

proc means data=subgroups_pse1 noprint;var xssd;class a;output out=sd1 

mean=xsmoothedsd;run; 

data sd0;set sd0;if a=. then delete; 

data sd1;set sd1;if a=. then delete; 

data xgivena0;merge mean0 sd0;by a;ie=0;run; 

data xgivena1;merge mean1 sd1;by a;ie=1;run; 

data xgivena;set xgivena0 xgivena1;run; 

axis1 order=(0 to 80 by 10) label=(angle=-90 rotate=90 'Conditional Means' 

font='Times New Roman' height=2in); 

axis2 order=(0 to 35 by 5) label=('Score' height=100in ); 

Legend1 label=(height=1 position=top justify=center '') 

 value=('Another Language' 'English Language') position=(top center); 

symbol1 color=blue interpol=none width=1 value=circle height=1; 

symbol2 color=red interpol=none width=1 value=square height=1;; 

proc gplot data=xgivena; 

plot xsmoothedmean*a=ie /vaxis=axis1 haxis=axis2 legend=legend1;  

title 'Figure 6. Comparing the Subgroup Differences in Smoothed E(X|A).'; 

run;quit; 
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axis1 order=(0 to 20 by 5) label=(angle=-90 rotate=90 'Conditional Standard 

Deviations' font='Times New Roman' height=2in); 

axis2 order=(0 to 35 by 5) label=('Score' height=100in ); 

Legend1 label=(height=1 position=top justify=center '') 

 value=('Another Language' 'English Language') position=(top center); 

symbol1 color=blue interpol=none width=1 value=circle height=1; 

symbol2 color=red interpol=none width=1 value=square height=1; 

proc gplot data=xgivena; 

plot xsmoothedsd*a=ie /vaxis=axis1 haxis=axis2 legend=legend1;  

title 'Figure 7. Comparing the Subgroup Differences in Smoothed SD(X|A).'; 

run;quit; 

 41



 

 42


	Introduction
	Loglinear Smoothing Models
	Fitting Loglinear Smoothing Models
	Evaluating the Fit of Loglinear Models
	C-Matrices
	A SAS Macro for Loglinear Smoothing
	Convergence Criteria

	Univariate Smoothing Example
	Bivariate Smoothing Example
	Trivariate Smoothing Example
	The Subgroup
	Four Trivariate Models: (18), (19), (20), and (21)


	Research Implications of This Study
	References
	List of Appendixes



